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Abstract: Green spaces and blue spaces in cities provide a wealth of benefits to the urban social–
ecological system. Unfortunately, urban development fragments natural habitats, reducing connectiv-
ity and biodiversity. Urban green–blue infrastructure (UGI) networks can mitigate these effects by
providing ecological corridors that enhance habitat connectivity. This study examined UGI connectiv-
ity for two indicator species in a rapidly developing city in the southern United States. We mapped
and analyzed UGI at a high resolution (0.6 m) across the entire city, with a focus on semi-natural
areas in private land and residential neighborhoods. Integrating graph theory and a gravity model,
we assessed structural UGI networks and ranked them based on their ability to support functional
connectivity. Most of the potential habitat corridors we mapped in this project traversed private
lands, including 58% of the priority habitat for the Golden-cheeked Warbler and 69% of the priority
habitat for the Rio Grande Wild Turkey. Riparian zones and other areas with dense tree cover were
critical linkages in these habitat corridors. Our findings illustrate the important role that private
semi-natural areas play in UGI, habitat connectivity, and essential ecosystem services.

Keywords: urban ecology; land conservation; graph theory; gravity model; ecosystem services;
social–ecological systems; Golden-cheeked Warbler; Rio Grande Wild Turkey

1. Introduction
1.1. Urban Green–Blue Infrastructure (UGI) and Wildlife Habitat

Urban development changes the landscape structure and the distribution of ecosys-
tems [1–4]. This urban transformation can reduce the extent of green spaces and fragment
natural areas such as forests and grasslands into smaller patches, resulting in reduced habi-
tat connectivity and increased fragmentation [5–8]. This fragmentation can, in turn, trigger
a cascade of ecological impacts including habitat loss, reduced species richness, alterations
in life-history dynamics, population decline, and regional extinction [9–11]. Recognizing
the need to counteract these effects of urban development, the concept of ecological net-
works emerged in the 1970s and gained significant attention within the fields of urban
planning, landscape ecology, and biogeography [12–15]. Increasing human impacts and
increasing concern for environmental health in subsequent decades led to the conceptual
evolution and implementation of urban green–blue infrastructure (UGI)—a combination of
natural, semi-natural, and engineered solutions that use green elements (e.g., vegetation,
parks, and natural areas) and blue elements (e.g., rivers, ponds, and wetlands) to mitigate
anthropogenic socio-environmental impacts [16–18]. UGI can improve the ecological value
of undeveloped areas [19], mitigate climate change impacts [20], improve public health [21],
encourage environmental justice [21,22], foster community cohesion [23], and promote
economic prosperity [24]. In sum, UGI networks have become a vital strategy for building
sustainable and livable cities [25,26].

While providing accessible and enjoyable spaces for humans within urban areas,
semi-natural areas (i.e., areas that are not untouched by human activity but maintain
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natural attributes/processes) also provide a source and flow of a multitude of ecosystem
services [21,27,28], including wildlife habitats [29]. When viewed at the scale of an entire
city, these habitats comprise microhabitats, buffer zones, ecological nodes, and ecological
corridors [14,30]. The effectiveness of these components will depend on their landscape
connectivity—a concept that emphasizes that species’ survival depends not only on repro-
duction and survival within habitat patches but also on individual movement between
these patches, influenced by both natural and human-made landscape features [31–34].
Landscape connectivity is defined and measured by structural connectivity and functional
connectivity. Structural connectivity specifies spatial relationships (e.g., size, adjacency,
and continuity) between similar compositional elements of the landscape (e.g., vegeta-
tion patches), while functional connectivity describes the movement of species within the
landscape relative to structural configurations of preferred cover types [35–37]. Functional
connectivity is more related to habitat connectivity, indicating the degree of connectivity
between patches of optimal habitat for individual species [38,39].

The loss of structural and functional connectivity is positively related to habitat iso-
lation [40–44]. Landscape fragmentation occurs when a continuous area is divided into
smaller, isolated fragments such as those for residential parcels [45,46]. This fragmentation
can lead to the disappearance or degradation of the landscape’s structural and functional
aspects. The best way to mitigate such impacts is to increase the habitat area and/or
the habitat quality [47]. The linkage strategy, as an alternative approach, aims to facili-
tate the displacements of individuals among local populations by creating corridors that
transform local habitat patches into functional ecological networks and improve biodiver-
sity [48–53]. Landscape ecologists recommend this corridor-focused linkage approach to
reduce the isolation of habitat fragments [54–56]. The corridor linkage approach evaluates
UGI connectivity for the movement of species and includes increasing habitat area [57].

1.2. Assessing the Connectivity of UGI

Various methods and principles have been used for analyses of UGI connectivity in
changing urban landscapes, including Euclidean distance, least-cost path, connectivity
indices, circuit theory, graph theory, and gravity models [58–60]. Euclidean distance
measures the straight-line distance between points in a two-dimensional space, such as
the distance between two habitat patches. It is a simple approach requiring minimal
data, but its usefulness is limited because of its inability to account for complex terrain,
species-specific behaviors, or varying resistance to movement across different land cover
types [61].

Least-cost path analysis quantifies potential movement routes over complex study
areas and can incorporate effects from varying topography and land cover [52], making
it more functionally realistic than Euclidean distance and thus better at mapping habitat
corridors [62]. In the least-cost approach, ‘landscape resistance’ refers to the cost that each
landscape element imposes to dispersing individuals, which can be estimated from expert
advice [63,64], modeled from presence/absence or density data [65], modeled from the
gene flow among local populations [66], and experimentally assessed [67,68]. The least-cost
approach is sensitive to the assignment of cost values (e.g., land cover class), and thus can
lead to considerable differences in connectivity results [69]. Several studies recognized that
the least-cost approach often focuses on the single path of lowest resistance and neglects
other potentially successful paths [61,70].

Connectivity indices are mathematical equations that measure connectivity or the
degree of landscape fragmentation. The main connectivity indices are the Connectivity
Index (CI), Probability of Connectivity (PC), Connectivity Probability (CP), Relative Nearest
Neighbor Index (RNNI), and Nearest-Neighbor Distance (NND) [71,72]. These indices, in
combination with other approaches, provide valuable insights into the spatial distribution
of habitat patches and the potential for species movement.

Circuit theory has been used to map UGI connectivity, usually for indicator species [73,74].
In circuit theory, the landscape is treated as a conductive surface and the nodes as an electric
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circuit, where the “current” represents the flow of organisms, genes, or other ecological
entities. Models derived from circuit theory, such as Omniscape, quantify the connections
from a grid cell to all other locations within a threshold distance [75]. Circuit theory
simplifies complex ecological processes and assumes that organisms move randomly
through the landscape, which may not always reflect real-world movement patterns [76].

Graph-based landscape models, which utilize graph theory to determine connectivity,
provide a spatial representation of networks in relation to land use activities [77] and
highlight connectivity among habitat patches and potential species movement [78,79].
These models, which are mostly raster-based, have been evaluated against empirical
data and are reported to be advantageous for both structural and functional connectivity
analysis [73,80–85]. Graph theory is often combined with gravity models, which facilitate
the consideration of the distance and size between habitat patches. This combination of
methods may provide a more accurate estimation of connectivity [86]. In sum, graph
theory provides a framework for representing habitat patches as nodes (or vertices) and
connections between them as edges (or links). Circuit theory can then be used to quantify
the flow of objects or resources through the network. Least-cost path methods are geospatial
analyses that apply graph theory with scenario-based criteria to better represent ecological
phenomena using a spatially explicit approach. As such, graph theory can be viewed as a
theory for habitat network research, such as circuit theory.

Connectivity approaches frequently use a focal species to represent broader biodi-
versity. However, this method is challenging to implement at broad scales owing to the
selection of one or more representative species and because the approach is time and
resource intensive [87–89]. Moreover, the impedance values of certain landscape elements
used to define the criteria for movement may not be applicable over coarse spatial extents.
Because of these limitations, a coarse-filter approach has been used to model connectivity
based on the level of landscape ‘ecological integrity’ [90,91]. The coarse-filter approach is
effective because of available human land use data, the straightforward criteria selection
process, and resistance related to the level of human modification [92].

To meet the objective of improved biodiversity in urban environments, green in-
frastructure connectivity analyses should be able to deliver conservation guidelines at
the spatial scale at which the impacts of landscape changes most prominently affect the
abundance and persistence of the focal species [31]. Green infrastructure connectivity ap-
proaches should be able to estimate the structural and functional connectivity for multiple
species and provide priority networks relative to species-specific habitat and movement
characteristics. A single connectivity model might not be able to predict the actual ecologi-
cal conditions, therefore the integration of multiple approaches is recommended to gain
a more comprehensive understanding of connectivity patterns and their implications for
conservation and ecological processes.

At the core of connectivity analysis is the land cover used to implement the selected
method, and accurate land cover classification is essential to mapping landscape patches
for connectivity analysis [93]. However, mapping large areas with a high level of accuracy
is challenging for several reasons: the availability of quality imagery that fulfill the specific
project goal [94,95], heterogeneity in data [96], landscape conditions [97], the complexity of
developing training and validation datasets [98], and large data volumes [98]. To conduct a
green infrastructure connectivity analysis with proper resistance values, it is essential to
have a high-quality land cover map. High-spatial-resolution imagery offers a number of
notable benefits to address these concerns, and publicly accessible, free or low-cost datasets
are available.

1.3. Research Gaps and Goals

Studies on UGI have mostly focused on identifying potential networks between
protected natural areas using traditional methods such as the minimum cumulative resis-
tance, least-cost path, or landscape indices [99–101]. A few studies have developed new
multi-scenario approaches, which consider multiple types or paths of UGI to evaluate and



Land 2024, 13, 1213 4 of 25

compare their impacts, benefits, and trade-offs [102,103]. Multi-scenario approaches for
UGI can consider different land use changes, climate conditions, ecological requirements,
social preferences, and policy interventions. Despite these advances, there is a notable
lack of research that integrates priority habitat networks for multiple species, especially
at a sub-meter resolution for the city scale [104,105]. Moreover, though the ecological
attributes of residential areas have been investigated for many years, there is still a major
research gap regarding the role of these lands in habitat connectivity. Indeed, most of the
research on habitat connectivity has focused on parks, protected places, and large natural
areas, ignoring smaller semi-natural spaces that occur on privately owned land parcels and
undeveloped lands [106–108].

In this study, we investigated two questions. First, how connected are UGI for two
indicator species with different mobility and habitat requirements? This involved un-
derstanding how different UGI are interlinked and how these connections facilitate the
movement of specific indicator species. We answered this question by mapping and analyz-
ing structural UGI networks, and then ranking them based on species criteria to determine
their ability to support functional connectivity. Our second question asked what is the
role of private semi-natural green spaces in these connected networks? To evaluate the
connections between different UGI, including private semi-natural areas, we performed
a wall-to-wall 0.6 m land cover classification. This process allowed us to map all (even
small) natural and semi-natural areas such as pocket parks, protected places, privately
owned yards/gardens, undeveloped lands, greenbelts, and green infrastructure along
roadways. Using this high-resolution map in combination with graph theory and a gravity
model, we modeled potential habitat corridors and UGI networks that included private
semi-natural lands.

2. Materials and Methods
2.1. Study Area

San Marcos, Texas is one of the fastest-growing cities in the nation and is located in
the fastest-growing county in the USA from 2000 to 2020 [109,110]. Its 2020 population
of 67,553 (population density = 730/km2) increased by 49% in the last 10 years and 93%
in the last 20 years [111]. Like other rapidly developing cities, San Marcos is facing
growing pressure on its ecosystem services [112]. Drought, urban development, and water
management pose significant challenges to the local ecosystems [113,114]. The strategic
creation and management of urban green spaces, undeveloped lands, and trails can mitigate
development pressures and improve ecosystem services [115].

San Marcos, like much of Central Texas, experiences a semi-arid climate and falls
under the Köppen climate classification system of the “Cfa” climate type, which is referred
to as a “Humid Subtropical” climate [116]. Both the Edwards Plateau and Blackland
Prairie ecoregions can be found in San Marcos. Land cover characteristics in the Edwards
Plateau feature a savanna-like environment with a mix of woodlands [117]. The Texas
Blackland Prairie ecoregion is known for its fertile soil, rolling terrain, and agricultural
productivity [118]. The vegetation in the San Marcos area includes a mix of grasses, shrubs,
and trees, with dominant upland tree species being Live oak (Quercus virginiana), Ashe
juniper (Juniperus ashei), and Cedar elm (Ulmus crassifolia). Our study area of 496 km2

included the entire city of San Marcos, its extraterritorial jurisdiction (ETJ), existing parks
and natural areas, and all the UGI within (Figure 1). Existing parks and natural areas
include both public and private land designated for recreational use and protection of
natural, cultural, or historical resources.
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Figure 1. Study area of San Marcos (Texas, USA) and its Extraterritorial Jurisdiction (ETJ). Important
placenames mentioned in article are identified for reference, including the two ecoregions: Edwards
Plateau (northwest of I-35) and Blackland Prairie (southeast of I-35).

2.2. Mapping Land Cover/Use and UGI from NAIP Imagery
2.2.1. Geospatial Data Sources

We used National Agriculture Imagery Program (NAIP) very-high-resolution (60 cm)
aerial imagery from 2018 to classify land use for the San Marcos ETJ. The NAIP im-
agery used in this analysis had four bands: Blue (420–492 nm), Green (533–587 nm), Red
(604–664 nm), and Near Infrared (683–920 nm), and was acquired at 4877 m (16,000 feet)
above ground level (AGL) with a Leica ADS100 airborne digital sensor between May 2018
and April 2019 [119]. A total of 18 NAIP image tiles were necessary to cover the extent of
the study area.

From the NAIP imagery, we calculated secondary datasets including Principal Compo-
nents Analysis (PCA), Independent Component Analysis (ICA), the Normalized Difference
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Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), and the Soil
Adjusted Vegetation Index (SAVI). We used vegetation and water indices to differentiate
vegetation cover from non-vegetation cover. These indices also helped to distinguish
between shadows and water bodies. From the PCA output, we calculated four texture
measures including contrast, entropy, standard deviation, and dissimilarity. Finally, a
Lidar dataset was downloaded from the USGS 3DEP program to address the topographical
characteristics of the land cover classes. From the LiDAR dataset, we created a digital
elevation model (DEM) as well as a canopy height model (CHM) at a 1 m spatial resolution.
These additional datasets were used to help visually distinguish and mitigate uncertainty
in land cover types during the training phase of the classification process.

2.2.2. Image Classification

Land cover classes of interest included the following eight land cover classes: trees,
shrubs, grass, cropland, buildup area, water, barren/soil, and shadow. We digitized thirty
signatures per land cover class for each of the 18 NAIP tiles separately. Prior to classifica-
tion, 25% of the training polygons for each class were withheld to be used as validation
data. The training data were used in three common classification algorithms: Random
Forest (RF), Support Vector Machine (SVM), and Neural Network (NN). We performed
the classifications separately for each NAIP tile using the ‘caret’ package in R version
4.2.0 [120,121]. Once the classifications were completed for each NAIP tile, we mosaicked
the outputs for each classification algorithm into a single image file (e.g., RF mosaic and
SVM mosaic). After the classification, we distinguished private and public land parcels
using the parcel type attribute of the 2020 county appraisal district (CAD) geodatabase.

2.2.3. Accuracy Assessment

To assess the performance of the classification algorithms, we used the reserved
training polygons to evaluate the agreement between the classified output and the reference
data and created three separate accuracy assessment matrices, one for each classification
algorithm. We used the accuracy assessment matrices to calculate the overall accuracy
(OA), Kappa coefficient of agreement (K), and user (UA) and producer (PA) accuracy
values for the overall map and each land cover class, respectively. Finally, to enhance the
interpretability of the final classification map and mitigate “salt and pepper” effects [122],
we applied a smoothing process using a majority filter with a 7 × 7 moving window [123].

2.3. Characteristics of Habitat Patches

The characteristics of land cover patches shape the connectivity and function of ecosys-
tems [124,125]. We analyzed the land cover patches to assess the landscape’s characteristics
before creating connectivity networks, utilizing common landscape metrics such as Core
Area (CA), Landscape Shape Index (LSI), Proximity Index (PI), Area-Weighted Mean Shape
Index (AWMSI), mean Patch Fractal Dimension (MPFD), and Shannon’s Evenness Index
(SEI) [126,127]. Considering that habitat patches may experience human disturbances in
urbanized areas, we used CA as a measure of habitat quality, indicating that a patch with
higher CA is more suitable for the persistence of our chosen species. Our analysis also
encompassed basic habitat patch statistics, including Total Area (TA), Mean Area (MA),
Total Core Area (TCA), and Mean Core Area (MCA).

The CA integrates patch size, shape, and edge effect into a single measure. All else
being equal, smaller patches with greater shape complexity have less core area. Most of
the metrics associated with the size distribution (e.g., mean patch size and variability) can
be formulated in terms of the core area. The Landscape Shape Index (LSI) reflects the
complexity of patch shape. The Proximity Index (PI) quantifies the spatial context of a
(habitat) patch in relation to its neighbors of the same class; it measures both the degree of
patch isolation and the degree of fragmentation of the corresponding patch type within the
specified neighborhood of the focal patch. The Area-Weighted Mean Shape Index (AWMSI)
indicates the irregularity of shapes. A value of one suggests that all patches are circular (for
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polygons), and it increases with greater patch shape irregularity. The Mean Patch Fractal
Dimension (MPFD) is another measure of shape complexity. The MPFD approaches a value
of one for shapes with simple perimeters and approaches a value of two when shapes are
more complex. Shannon’s Evenness Index (SEI) assesses the evenness or equitability of
patch distribution. SEI ranges from 0 to 1, with 1 representing perfect evenness of patches
and 0 indicating maximum inequality.

2.4. Networks and Corridor Identification

The first step of developing a UGI network is to identify the major nodes (i.e., large
natural areas), followed by identifying potential corridors and ranking the networks. Using
the least-cost path approach, we identified potential corridors in the San Marcos ETJ.
The design of the path for UGI took into account the resistance/impedance value of the
land use/land cover along the link. The efficiency depends on the source habitat and the
resistance created by land uses along the path. The resistance also depends on the type of
species. Our final product of potential corridors had multiple layers for each species. We
designed the impedance for two species with different mobility and habitat requirements:
(1) Golden-cheeked warbler (GCW, Setophaga chrysoparia), an endangered migratory bird
species in the Texas Hill Country region whose primary mode of travel is in the air; and
(2) Rio Grande wild turkey (RGWT, Meleagris gallopavo intermedia), a native year-round bird
species whose primary mode of travel is on the ground.

To model habitat connectivity networks for San Marcos, Texas, we used the Golden-
cheeked warbler (GCW) and Rio Grande wild turkey (RGWT) as focal species because of
their ecological and cultural importance to the region, as well as their different mobility
and habitat requirements. The federally endangered GCW inhabit oak mottes and mixed
Ashe juniper and hardwood woodlands on canyons and ravines in the Edwards Plateau
ecoregion, and they feed on insects and spiders found on the bark and leaves of these
trees. This specialist species migrates to Central Texas from Mexico and Central America
in March to nest and raise their young, returning to their winter home in July. Males are
highly territorial of nest sites, and female GCWs only lay three to four eggs during the
entire nesting season. Their habitats are vanishing from natural to non-natural land cover
changes resulting from housing, roads, industry, and agriculture [128,129].

The RGWT is one of two remaining species of wild turkey native to North America
and is the ancestor of the domestic turkey. RGWTs found in Texas sympatrically speciated
from southeast Mexico. Wild turkeys are ground birds that occupy hardwood and mixed
conifer–hardwood forests with scattered shrubs, fields, orchards, floodplains, and seasonal
marshes. They prefer to live in dense native and mature plant communities where canopy
openings are widely available [130]. RGWT habitats have also been declining due to urban
and rural land cover changes [131,132].

We characterized the habitat/movement of the GCW and RGWT using published lit-
erature and expert consultation. We used a comprehensive matrix of land-cover resistance
in determining the connectivity of habitat patches for the two separate species. There is no
established resistance value for land cover features for species movement [133,134], there-
fore we used values based on ad hoc data following the studies that modeled connectivity
between forest habitat patches [135–138]. We consulted with six experts from the Texas
A&M AgriLife Extension Service and the Texas Parks and Wildlife Department (TPWD)
who specialize in GCW and RGWT. We collected the resistance scores they assigned for
specific land cover types, derived relative scores, and consulted with them again to finalize
the resistance values.

Using the sources above, we assigned path resistance values that took into account
habitat size, land use type, and road networks along the path [139,140]. These resistance
values (1 to 1000) are theoretical variables that represent relative estimates of the resistance
to movement through the path. We calculated resistance values using the Rating and
Weighting (RAW) method [141], the Delphi method [142], and insights from previous
transportation studies [143]. We assigned a value of 1 to a land use with no resistance,
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while the land use with the highest resistance received a maximum impedance of 1000
(Tables 1 and 2). For both species, artificial structures such as buildings and roads had the
highest resistance values, but most resistance values were proportionally higher for RGWT
(Table 2) compared to GCW (Table 1) because RGWT primarily moves along the ground
while GCW moves aerially. The resulting weighted land cover maps were transformed into
a habitat suitability map for use as a cost surface in the least-cost path analysis.

Table 1. Resistance value classes for Golden-cheeked warbler (GCW).

Resistance Type Value (1–1000)

Land cover
Water 10
Buildup Area 900
Trees, Shrub 1
Cropland 150
Grass 100
Barren Soil 300

Road types
A1 (Speed limit > 65, 4 lanes) 300
A2 (Speed limit 55–65, 4 lanes) 200
A3 (Speed limit 45–55, 2 lanes) 200
A4 (Speed limit 35–45, 2 lanes) 100
A5 (Speed limit < 35 mph) 100

Rail network 50

Table 2. Resistance value classes for Rio Grande wild turkey (RGWT).

Resistance Type Value (1–1000)

Land cover
Water 800
Buildup Area 1000
Trees 1
Cropland 100
Shrub/Grass 50
Barren soil 400

Road types
A1 (Speed limit > 65, 4 lanes) 990
A2 (Speed limit 55–65, 4 lanes) 990
A3 (Speed limit 45–55, 2 lanes) 700
A4 (Speed limit 35–45, 2 lanes) 500
A5 (Speed limit < 35 mph) 300

Rail network 300

2.5. Priority Networks for Indicator Species

We mapped and examined the distribution of specific habitat patches/corridors and
the best potential networks to connect them. In general, areas (or patches) have a greater
interaction when they are larger and closer together [139]. Patch weight is necessary
to apply the gravity model. We assigned a weight to each patch based on the size and
habitat preferences by species. We used GCW and RGWT survey data from previous
studies supported by SMGA (San Marcos Greenbelt Alliance), USFWS (U.S. Fish and
Wildlife Service), TXST (Texas State University), and CoSM (The City of San Marcos) to
assign weights. Weights determine the relative significance with reference to the habitat
requirement [139].

Na = (Xa × Sa)× 10 (1)

where Na is the patch weight for the GCW and RGWT habitat patch, Xa is the area of
the patch, and Sa is the minimum area required for the indicator species. Weight was
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multiplied by 10 to normalize the value. We used the following equation to inform the
gravity model (Gab):

Gab = (Na × Nb)/D2ab (2)

where Gab is the level of interaction between patches a and b, Na is the weight of patch a,
Nb is the weight of patch b, and Dab is the distance between centroids of patches a and
b. The gravity model determined different levels of interactions between patches. We
used the patch center over the patch edge for our bird species as the center of a patch
is less influenced by irregularities in patch shape and edge effects. We used the Python
programming language to estimate and evaluate multiple potential networks and identified
the most effective models through a Monte Carlo simulation. We conducted 550 iterations
in the simulation process to attain a 95% confidence level. The importance and significance
of these networks can be identified using the Gamma and Beta indices. The Gamma ratio
represents the percentage of connectivity within each network. The Beta index indicates the
complexity of the network; it is calculated by dividing the number of links by the number
of patches.

We used graph theory to represent the habitat patches as a series of interconnected
patches, where flows occurred as a result of structural and/or functional patch connectiv-
ity [144]. We analyzed several graph components for each of the selected networks. These
were the evenness index [145], core area index [146], shape complexity [147], and edge
density of patches [148]. These indices provided a quantitative description of GCW and
RGWT habitat structures.

After constructing habitat networks and ranking networks using gravity models, we
analyzed the share of semi-natural areas that occurred on private lands. To understand the
contributions of neighborhood lands on proposed networks, we used San Marcos Council
of Neighborhood Associations (CONA)-defined boundaries along with census tracts. These
boundaries comparatively reflected the basic characteristics of a coherent physical layout,
shared infrastructure, common land uses, and a sense of community.

3. Results
3.1. Land Cover Distributions

The 0.6-m resolution land cover map we produced for the city of San Marcos achieved
an overall accuracy of 88% using the Random Forest (RF) algorithm, with a Kappa coeffi-
cient of 0.85 (Table A1 in Appendix A). We did not use the Support Vector Machine (SVM)
and Neural Network (NN) algorithms because of their overall lower accuracies of 85% and
82%, respectively. Our land cover map revealed several major patterns (Figure 2). The
northwestern half of the study area had relatively high forest and shrub cover (62%), char-
acteristic of the Edwards Plateau ecoregion. Single-family residential neighborhoods and
adjacent parks in this ecoregion had the densest forest cover, while most of the large ranches
had savanna landscapes that were mostly grassland with small patches of shrubs/trees.
The southeastern half of the study area was dominated by grasslands and cropland (>75%),
characteristic of the Blackland Prairie ecoregion. Most of the trees in this ecoregion followed
river networks. There were also a lot of trees around the central historic district of San
Marcos. Aside from downtown San Marcos, most of the urban development followed
the Interstate 35 corridor that approximately marks the dividing line between the two
ecoregions. Developed land cover (7.6%) was higher in the Blackland Prairie region than in
the Edwards Plateau region (5.1%) (Table 3).
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Table 3. Land cover distribution in San Marcos ETJ.

Whole ETJ Private Lands Neighborhoods Only Edwards Plateau Blackland Prairie

Area (km2) 496.8 401.8 91.2 174.7 309.9
Land cover Area (%) Area (%) Area (%) Area (%) Area (%)
Trees 14.1 12.1 16.2 32.5 3.3
Shrub 18.1 15.4 20.3 30.0 11.0
Grass 42.4 45.5 43.5 27.1 51.3
Cropland 15.7 16.0 2.4 1.6 24
Buildup Area 6.6 8.8 11.9 5.2 7.7
Water 0.6 0.8 0.5 0.3 0.8
Barren Soil 1.9 0.9 3.0 2.5 1.5
Shadow 0.6 0.5 2.2 0.8 0.4

Semi-natural areas (trees, shrubs, and grass) covered 371 km2 (or 74%) of the entire
study area (Table 3). Most of these semi-natural areas (59%) occurred on private land, with
15% occurring in residential neighborhoods and 44% occurring on other private land like
ranches. The share of tree, shrub, and grass cover within neighborhood boundaries was
slightly higher than the whole ETJ pattern, with percentages of 16.2%, 20.3%, and 43.5%,
respectively. The tree and shrub cover in privately owned parcels exhibited slightly lower
percentages than the overall pattern, with 12.1% and 15.4%, respectively. In contrast, the
grass share saw a slight increase, rising from 42.4% in whole ETJ to 45.5% in private lands
(Table 3).
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3.2. Spatial Patterns of Habitat Patches

Using the land cover map in Figure 2, we selected common landscape metrics to
quantify spatial patch characteristics, patch classes, and landscape mosaics. Given that
small UGI patches cannot support GCW, we selected UGI patches larger than 0.1 km2,
the minimum habitat requirement for GCW [149]. Our second indicator species, RGWT,
can be found in grassland and cropland along with trees [150]. For the RGWT habitat,
we extracted cropland, grass, and tree cover larger than 0.01 km2. We identified a total of
107 UGI patches with an area larger than 0.1 km2 as GCW habitats, which account for 85%
of the total vegetation cover and 33% of the whole study area. RGWT habitats consisted of
1874 patches, which is approximately 49% of the study area.

Regarding landscape metrics, the mean patch size and mean core area were signifi-
cantly higher for GCW than RGWT because the threshold value for GCW was higher than
for RGWT (Table 4). The AWMSI value for the GCW habitat area was 66.66, signifying
highly irregular shapes. A value of 1 represents a regular shape, while higher values (≥1)
indicate more irregular shapes. The habitat shape for RGWT showed less irregularity
(AWMSI = 40.11) than the GCW habitat. The Mean Patch Fractal Dimension (MPFD) as-
sesses the shape complexity. An MPFD of 1 indicates simple perimeters, while a value of
2 indicates more complex perimeters. The MPFD values of 1.57 (GCW) and 1.4 (RGWT)
indicated that both habitats were complex in shape (Table 4). Shannon’s Evenness Index
(SEI), which measures the evenness of patches, indicated a medium level of evenness for
GCW habitats (0.53) and a more even distribution for RGWT (0.62). These patch indices are
important for understanding the spatial characteristics of habitat quality, which influence
the connectivity of UGI patches. For example, higher mean patch size and core area for
GCW suggest more substantial and potentially more viable habitats, while irregular shapes
and complex perimeters diminish the ease of movement and connectivity for species.

Table 4. Landscape metrics of patches suitable for Golden-cheeked Warbler (GCW) and Rio Grande
Wild Turkey (RGWT) in San Marcos ETJ.
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GCW 152.3 446.13 679.72 13.4 66.66 522.08 1.57 0.53 1.30
RGWT 15.5 1095.17 169.88 2.97 40.11 431.53 1.41 0.62 0.15

3.3. UGI Networks for Golden-Cheeked Warbler (GCW) and Priority Areas

We extracted UGI networks for GCW by applying a gravity model and graph theory
to connect the major habitat patches. The outcome found that the northwest region of San
Marcos featured a concentrated core area of habitat patches, functioning as a vital hub
within the study area and potentially offering essential resources and habitat for GCW
(Figure 3). The corridors formed the arteries of the networks and correspond to vege-
tated areas along riparian zones, private green spaces, and roadside green infrastructure.
Dense forests predominantly covered these corridors, occasionally interrupted by openings
created by agricultural fields or other land covers.
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Figure 3. Potential connected habitat networks for Golden-cheeked Warbler (GCW) in San Marcos ETJ,
with suitability ranking (red number) located in the middle of the linear corridor. Major greenspace
patches were identified using a threshold patch area of 0.10 km2.

The modeled GCW networks, which encompassed 93.43% of semi-natural vegetation
cover (tree, shrub, and grass), 3.79% of croplands, and 1.75% of buildup areas, collectively
covered 32.87% of the study area (Table 5). Analyzing the distribution of each land cover
type, we found that 80.5% of the tree cover and 78.3% of the shrub cover were integrated
into the ecological networks (Table 5). Buildings and roads were major barriers to con-
nectivity. The network for GCW avoided buildup areas because of the high impedance
value. However, buildup areas, water, and barren soil also contributed to the formation of
networks in areas where low-resistance land cover was not available (Figure 3).

In Table 5, the GCW networks on private lands and neighborhood lands are separately
outlined. This clear separation allows for a detailed analysis of the network’s land cover
patterns, both on private properties and within the defined neighborhood areas. Table 5
shows that 58.19% of GCW networks were established on privately owned land parcels,
while 22.17% were within neighborhood areas. The majority of these networks were
established using grass, shrubs, and tree cover on private lands.

We ranked corridors for each alternative network through an analysis of existing
habitat survey data and the interactions between patches using graph theory and gravity
model as described in Section 2.5. We calculated the degree of interaction based on patch
size and distance between patches. The potential corridor primarily ran through an area
with the largest high-quality habitat patches in the northwest (Figure 3). Corridors with
high rankings (i.e., 1, 2, 3, 4, and 5) showed high degrees of connectivity through tree
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patches in neighborhood areas (Figure 3, marked in red). This ranking system served as
a guide for prioritizing habitat networks for GCW. The first-ranked corridor for GCW
traversed through Ranch Road 12 and a neighborhood called West Centerpoint connecting
Freeman Ranch and Purgatory Creek Natural Area, two major GCW habitat areas. The
second-ranked corridor connected Ringtail Ridge Natural Area and other adjacent natural
areas to Freeman Ranch, linking through the Country/Backus Estates neighborhood. The
third-ranked corridor for GCW ran through the pathway of Purgatory Creek and Sink
Creek, connecting Purgatory Creek natural areas to Freeman Ranch. The fourth- and fifth-
ranked corridors connected Five Mile Dam Park and San Marcos River parks to Freeman
Ranch, traversing through neighborhoods and green areas to the north.

Table 5. Distribution of potential habitat networks for Golden-Cheeked Warbler (GCW).

Land Use Area under
Networks (km2)

Network’s Land
Cover %

Overall Land Cover %
Contributed to

Networks

% of Networks on
Private Lands

% of Networks on
Neighborhood

Trees 56.71 34.77 80.50 19.13 8.90
Shrub 70.58 43.28 78.30 29.44 10.10
Grass 25.08 15.38 11.90 7.11 2.10
Cropland 6.18 3.79 7.89 1.83 0.41
Buildup area 2.86 1.75 8.70 0.45 0.40
Water 0.50 0.31 18.31 0.14 0.11
Barren Soil 1.17 0.72 13.10 0.09 0.14
Total 163.08 100.00 58.19 22.16

Neighborhood green spaces surrounding existing natural areas acted as the main
connector to the source, accounting for 9% of the overall networks (Figure 3). There were
also corridors in the northeast and southeast that followed the San Marcos River. Networks
for GCW were not functional in these areas because of the isolation from main habitat
sources. GCW mainly inhabited the northwest side (Edwards Plateau) of the study area
(Figure 3). The most significant habitat impedance appeared along Interstate 35 and the
southeast side of the study area, where road networks, spreading development, and large
croplands dominated (Figure 3).

3.4. UGI Networks for Rio Grande Wild Turkey (RGWT) and Priority Areas

The UGI networks for RGWT were comparatively dispersed because of their habitat
characteristics (Figure 4). Habitat areas for RGWT included trees, grasses, and cropland
patches greater than 10,000 m2. The core areas for RGWT habitats were located in the
northeast and northwest areas. The patches in the other core areas were distributed in
linear patterns, mostly along stream networks.

The RGWT networks comprised 88% vegetation cover (trees, shrubs, and grass), 11.6%
croplands, and 0.5% buildup areas (Table 6). These networks collectively encompassed
nearly half of the study area. High resistance along the pathways led to the inclusion of
buildup areas, water bodies, and barren soil in less than 1% of these networks. These
acted as significant obstacles to connectivity, likely isolating habitat patches for RGWT.
Private semi-natural lands significantly contributed to the proposed RGWT networks.
Approximately 62.41% of RGWT networks were located within private lands, and 23% of
these were within single-family neighborhoods that contributed to these networks.
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Figure 4. Potential connected habitat networks Rio Grande Wild Turkey (RGWT) in San Marcos ETJ,
with suitability ranking (red number) located in the middle of the linear corridor. Major greenspace
patches were identified using a threshold patch area of 0.10 km2.

Table 6. Structural analysis of the potential habitat network for Rio Grande Wild Turkey (RGWT).

Land Use Area under
Networks (km2)

Network’s Land
Cover %

Overall Land Cover %
Contributed to

Networks

% of Networks on
Private Lands

% of Networks in
Neighborhood

Trees 53.43 26.49 75.97 17.54 8.65
Shrub 68.65 34.04 76.47 20.65 10.54
Grass 63.41 31.44 30.13 24.22 14.39
Cropland 15.54 7.70 19.85 6.54 1.54
Buildup area 0.50 0.25 1.52 0.20 0.11
Water 0.10 0.05 3.67 0.04 0.03
Barren Soil 0.07 0.03 0.78 0.06 0.01
Total 201.70 100.00 69.25 35.27

The priority networks for RGWT were in the northwest and southeast areas, connecting
core areas of habitat patches (Figure 4). The first-ranked corridor connected the two largest
protected areas in the city’s ETJ, Purgatory Creek Natural Area and Freeman Ranch. The
second-ranked corridor extended from Freeman Ranch to other large ranches and a low-
density neighborhood. The third-priority corridor stretched from the Spring Lake Natural
Area (north of downtown San Marcos) to Freeman Ranch (northwest of downtown San
Marcos) via Sink Creek and the Country/Backus Estates neighborhood. The fourth-priority
corridor linked two significant source layers, Purgatory Creek Natural Area and Freeman
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Ranch, through Purgatory Creek to the west. The fifth-priority corridor connected major
patches located in the southwest, specifically those along York Creek and Purgatory Creek.
Corridors along Interstate 35 were poorly connected, especially close to the city center
because of the high impedance value of roads and buildings. Unlike GCW habitats, there
were networks along the Blackland Prairie ecoregion; however, because of the habitat
characteristics, these networks ranked lower compared to the Edwards Plateau (Figure 4).

4. Discussion
4.1. UGI Connectivity: Graph Theory and Gravity Model

The objective of this study was to map and analyze urban green infrastructure (UGI)
networks for two species with a specific emphasis on the contribution of mostly small
private semi-natural areas to the connectivity of these networks. To fulfill the research goal,
our study employed a combination of landscape metrics, graph theory, the gravity model,
and least-cost path analyses. This multi-method approach presents new opportunities
for land conservation and ecological restoration. We believe that our methodology of
using path impedance to identify potential habitat corridors for GCW and RGWT is a
more accurate approximation of UGI connectivity compared to randomly selected linkage
approaches [151,152].

The use of the gravity model added a useful layer of network preference for selected
species. The determination of the relative significance of each green space within the net-
work offered valuable guidance for improved UGI planning. The gravity model considers
the size and proximity of UGI, which more accurately models how species move through ur-
ban environments [153]. Previous studies found the gravity model to be particularly useful
in fragmented landscapes [138,153,154]. Similarly, the utilization of least-cost path analysis
to identify potential corridors resulted in a realistic representation of the complex landscape,
which is critical for successful conservation and urban planning efforts [139,155–157].

In fragmented urban landscapes, the complexity of UGI poses challenges in assessing
the value of planned networks, particularly in terms of connectivity [158,159]. Fischer
and Lindenmayer [160] explained that evaluating these networks requires considering
various factors such as spatial configuration, ecological processes, and the integration of
multiple green spaces to ensure effective connectivity and functionality. Li et al. [161]
recommend future studies to adopt a land use or land cover perspective, aligning with
practical planning and design scales. The approach outlined in this study effectively
identifies potential habitat corridors and patches as functional network components from a
land-use/land cover (LULC) perspective.

4.2. Network Analysis for Indicator Species: Evaluating and Ranking Connectivity

Habitat networks for GCW and RGWT utilized 80% of the city’s total tree cover and
almost 80% of the city’s shrublands (Tables 5 and 6), revealing the importance of trees and
shrubs (many of these young trees) for bird habitats in urban landscapes. Regarding land
cover classes along the paths, we found that 37% consisted of trees, 41% of shrub cover,
and 15.38% of grass for GCW. The land cover classes along the RGWT paths significantly
changed, with 7.7% of the networks formed by cropland, 26.49% by trees, 34.04% by shrubs,
and 31.44% formed by grass. Network land cover distributions showed that over 90%
formed with vegetation cover (trees, shrubs, and grass) with little inclusion of other land
cover types like barren land, cropland, and buildup areas. The contribution of vegetation
in proposed lands proved that San Marcos ETJ has an abundance of vegetation cover, and
proper utilization of these vegetated areas could lead to a rich biodiversity network.

Looking at the spatial distribution of the proposed networks, the northwestern region
of San Marcos, known as the Edwards Plateau ecoregion, exhibited high tree cover density
and minimal urban development, making it an ideal habitat for both the GCW and RGWT
populations. Existing large parks and natural areas also made it a suitable place for
GCW and RGWT habitats. Although GCW networks were mainly concentrated in the
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northwestern area, RGWT networks had the potential to grow and expand through the
southeastern part of the ETJ (Figure 4).

In a comparable study, Lopes, et al. [162] analyzed greenway networks in urbanized
areas where the share of impervious land cover was higher than the pervious cover and
found that networks were mainly concentrated in peripheral areas near the existing nat-
ural source areas. While there was a relatively high concentration of favorable habitat
patches distributed throughout our study area (at least the Edwards Plateau half of the city;
Figures 3 and 4), they were not contiguous or connected, potentially creating challenges
for wildlife movement. Thus, priority corridors play a crucial role in structurally and func-
tionally connecting these UGI patches. This approach aligns with the study conducted by
Huang et al. [163], which demonstrated that planned ecological networks enhance the shape
complexity of green patches, improve landscape connectivity, and reduce fragmentation.

In our study area, the first-priority corridor for both the GCW (Figure 3) and RGWT
(Figure 4) is a perfect example of how one parcel of land (location of the red 1) is key to
the movement of wildlife from one large, protected area to another. In San Marcos, this
parcel connected the 14.1 km2 protected Freeman Ranch with the 2.83 km2 Purgatory Creek
Natural Area and its extended network of trails and natural areas. Unfortunately, this land
parcel was targeted for development in 2023, threatening the major wildlife corridor in San
Marcos [164].

We assessed potential network configurations by overlaying land-use patterns and
habitat preferences of two indicator species. This approach allowed us to create networks
in a complex urban landscape and identify potential challenges that may arise during
network construction. Jongman [165] stated that creating connected green space networks
is a complex process and should not be based on species distribution data but rather follow
a more comprehensive long-term strategy. To address this complexity, researchers recom-
mend site-specific, multi-scale modeling with consideration of structural and functional
connectivity [86,165,166], as we did in this study.

4.3. UGI Connectivity: The Role of Private Semi-Natural Lands

Numerous studies have documented semi-natural habitat loss due to urbanization
and agriculture [167–170]. In addition to reducing overall habitat areas, these processes
decreased the connectivity of the remaining fragments [171,172]. To successfully restore
semi-natural habitats, Harlio et al. [173] emphasized the importance of both site restoration
and prioritizing the improvement of habitat connectivity. Hooftman and Bullock [106]
suggested that this process begins with detailed mapping of long-term habitat changes on a
fine scale, providing baseline information about past habitat configurations. Lindenmayer
et al. [174] focused on understanding the cumulative impacts of landscape processes and
improving connectivity strategies to balance ecological benefits. Other previous research
directed restoration efforts to focus on creating ecological networks that are easy to restore
and have more ecological value [175–177]. Paloniemi and Tikka [107] investigated how
different stakeholders perceive the habitat connectivity process. They highlighted the
necessity for a ‘multilateral governance approach’ to integrate privately owned semi-
natural lands into the broader ecosystem, aiming to enhance overall biodiversity.

Our analysis found a significant role of private semi-natural green space in the overall
UGI networks. The priority habitat corridors we identified covered 124 km2 for GCW and
252.9 km2 for RGWT. Within the 124 km2 of GCW habitats, a total of 71.92 km2 spanned
through privately owned land parcels, making up approximately 59% of the entire GCW
habitat networks. Within the extensive habitat network spanning 252.9 km2 for RGWT,
a total of 155 km2 (61.2%) were connected through privately owned ranches, farms, and
individual land parcels. This intricate interconnection highlights the integration of these
vital private ranches and farms within broader biodiversity conservation networks.

Texas working lands encompassing farms, ranches, and forests play a vital role in food
production, supporting rural economies and providing diverse benefits [178]. Between 1997
and 2017, Texas saw the transformation of about 8900 km2 of designated working lands
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into non-agricultural uses [178]. A significant portion of this area, nearly 485 km2, occurred
in the last five years of that period. Historically, farms and ranches have given way to
urban areas, but the current pace of land conversion is unprecedented, driven by increasing
incentives for landowners to sell or subdivide. This swift shift in land use jeopardizes the
region’s cultural and natural heritage resources [179,180]. Preserving these ranches and
farms and their benefits is a significant challenge, highlighting the urgent need for sustain-
able conservation strategies in the face of relentless development pressure. Conservation
efforts, reliant on private landowners through methods like conservation easements, are
challenged by limited protected areas and conservation alternatives. Farms and ranches
played a vital role in proposed GCW and RGWT networks, highlighting the importance of
including these lands in biodiversity conservation efforts through conservation easements.

A substantial section of both GCW and RGWT networks was located within the
boundaries defined by the Council of San Marcos Neighborhood Association (CONA).
For instance, 15 km2 of GCW networks, equivalent to 22.17% of the total GCW networks,
passed through neighborhood areas. In the case of RGWT, approximately 35.93 km2 of
networks, nearly 23% of the overall RGWT networks, traversed through neighborhoods.
These findings suggest that a substantial portion of semi-natural areas in neighborhoods
such as yards, gardens, parks, easements, and greenspaces could contribute to connecting
the existing parks and protected places.

Our study illustrated that private green spaces within the San Marcos ETJ play a signifi-
cant role in UGI and enhance habitats for birds and wildlife [181,182]. To further leverage these
benefits, the next step should be to preserve accessibility to these lands and integrate them
into the broader ecological system. Conservation easements could ensure this accessibility.
Hayward and Kerley [183] highlighted how the simple easement approach caused substantial
changes in urban neighborhood ecosystems. Rudd, Vala, and Schaefer [157] explained the role
of backyards in biodiversity conservation and criticized the role of government bodies for the
failure to adopt simple wildlife conservation strategies. The City of San Marcos is engaged in
the Edwards Aquifer Habitat Conservation Plan (EAHCP), primarily focusing on river-based
ecosystems and existing protected areas. However, upon reviewing the 2019 San Marcos
Parks, Recreation, and Open Space Master Plan, it is evident that there is no emphasis on
conservation easements or community involvement for biodiversity conservation in privately
owned lands. Our findings suggest that private green spaces could play a similar role for
wildlife movement (Figures 2–4) as those in wildlands. It becomes apparent that relatively
small interventions such as implementing fence-free easements and constructing minimal
green corridors could facilitate the movement of birds and wildlife. These deed restriction
practices exist in some San Marcos neighborhoods but have not been strictly enforced, a
problem found in other communities as well [184].

Higher-level government policies could also enhance ecological corridors in private
and residential areas [185]. Two examples are incentivized tree-planting programs and
wildlife tax exemptions—a property tax incentive program designed to encourage landown-
ers to manage a portion of their property for wildlife habitat. Current wildlife tax exemp-
tions in Texas require a minimum of 14–20 acres of land [186]. This law restricts the
integration of medium and small-sized parcels into the broader UGI network. While
large natural areas are most desirable, a connected network of semi-natural blue–green
spaces have significant conservation value [187]. Moving forward, land conservation
strategies should include (1) changes in local and state tax policies to broaden wildlife
tax exemptions to smaller lands and (2) community-based conservation initiatives where
neighboring landowners collaborate to create wildlife corridors and shared conservation
areas [185,188,189].

5. Conclusions

In the context of rapid urbanization and landscape fragmentation, this study mapped
and analyzed urban green—blue infrastructure (UGI) networks, with a particular focus
on the role played by private semi-natural landscapes. Private semi-natural green spaces
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in our case study were indeed important for ecological habitat, with 60% of the priority
habitat corridors traversing through private parcels and 23% through neighborhood areas.
Riparian zones and other concentrations of trees stood out as key corridor linkages. Our
findings reaffirm the importance of integrating private green spaces, even small ones, into
urban wildlife habitat plans.

Our study focused on bird habitats and corridors; however, UGI connectivity also
aids humans by establishing a network of accessible and functional green spaces that
provide ecosystem services and other needs of residents/visitors [190,191]. Understanding
the relationship between social movement and UGI is important for holistic health ap-
proaches [192], and future studies should assess UGI within the context of social–ecological
systems. There is also evidence that improving access to nature benefits social cohesion
and community well-being [193].
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Appendix A

Table A1. Land cover confusion matrix to estimate the Random Forest (RF) classification accuracy.
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Water 8 0 0 0 0 0 0 0 1.00
Buildup 0 10 0 0 0 0 0 0 1.00
Shadow 1 0 7 0 0 0 0 0 0.88
Barren 0 0 0 9 0 1 0 0 0.90
Cropland 0 0 0 1 18 3 0 0 0.82
Grass 0 0 0 1 4 22 1 0 0.79
Shrub 0 0 0 0 0 1 22 2 0.88
Trees 0 0 0 0 0 0 1 21 0.95
Producer accuracy 0.89 1.00 1.00 0.82 0.82 0.81 0.92 0.91
Overall accuracy 0.88
Kappa 0.85
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